
第4講探索手法(1)

- 探索とは
- 状態空間の探索
- ・ 状態空間の表現
- 探索手法の分類
- コストを考えない探索

(解の)探索とは

- 解
 - 初期状態から目標状態に到達するまでの経路
- 解の探索
 - 状態空間のなかから、目標状態に到達する経路を見つ け出すこと
- 状態空間
 - 状態をノード、オペレータ適用による状態の遷移を状態 (ノード)間のアークとみなし、グラフとして表現

状態空間のグラフ表現

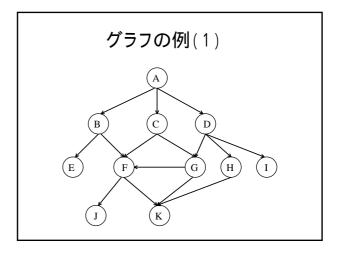
探索手法の分類

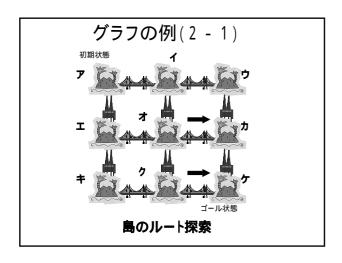
- コストを考慮しない探索(しらみつぶし探索)
 - 深さ優先探索(縦型探索)
 - 幅優先探索(横型探索)
 - 反復深化探索
- コストを考慮した探索
 - 経験的知識を用いない探索
 - 分枝限定法
 - 経験的知識を用いる探索
 - 最良優先探索
 - A*アルゴリズム(Aアルゴリズム)

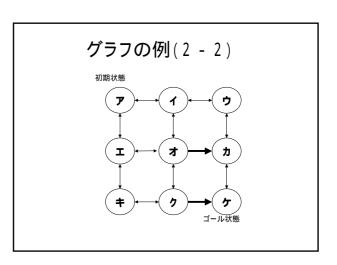
深さ優先探索

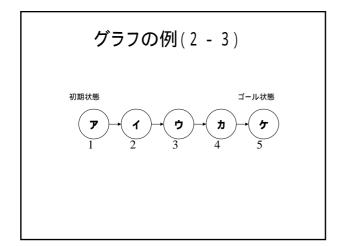
- アルゴリズム
 - 初期/ードをOPENリストに入れる。CLOSEDリストを空に 初期化する。
 - 2. OPENリストが空ならば、探索は失敗し、実行は終了。
 - 3. OPENリストから先頭の要素Nを取り出し、CLOSEDリストの最後にNを追加する。
 - 4. 要素Nが目標/ードであれば、探索は成功し、実行を終了する。
 - 要素Nから1ステップで到達できる子ノードのうちで、 OPENリストにもCLOSEDリストにも含まれていないものを すべてOPENリストの先頭に追加する。
 - 6. 2へ戻る。

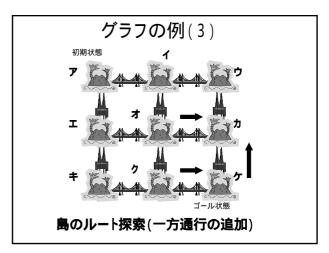
幅優先探索


- アルゴリズム
 - 初期ノードをOPENリストに入れる。CLOSEDリストを空に 初期化する。
 - 2. OPENリストが空ならば、探索は失敗し、実行は終了。
 - 3. OPENリストから先頭の要素Nを取り出し、CLOSEDリストの最後にNを追加する。
 - 4. 要素Nが目標/ードであれば、探索は成功し、実行を終了する。
 - 要素Nから1ステップで到達できる子ノードのうちで、 OPENリストにもCLOSEDリストにも含まれていないものを すべてOPENリストの最後に追加する。
 - 6. 2へ戻る。


OPENリストとCLOSEDリスト


- OPENリスト
 - 探索において行き止まりから抜け出せるようにする
 - 次に選択できる状態の候補の保持に利用
- CLOSEDリスト
 - 一度選択したノードはCLOSEDリストに記録しておき、 以後選択の候補にならないようにする
 - 同じノードを二度選択しないために利用


アルゴリズムの完全性


- グラフが有限で、解が存在すれば、必ず解を 見つけることができる。
- これをアルゴリズムの完全性という。
- 深さ優先探索、幅優先探索とも完全性が保証 されるアルゴリズムである。

